Энциклопедии, словари, справочники
 Энциклопедии, словари, справочники (поиск)   /   Химическая энциклопедия  Читатели спрашивают 
 
А Б В Г
Д Е Ж З
И К Л М
Н О П Р
С Т У Ф
Х Ц Ч Ш
Щ Э Ю Я

ЦВЕТНОСТЬ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ , зависимость цвета орг. соед. от их строения. В статье рассмотрены основные положения электронной теории цветности. Ощущение цвета возникает в результате воздействия на зрительный нерв электромагн. излучения с частотами v в пределах 3,8 х 10|4-7,6 х 1014 Гц, т.е. с длинами волн6013-24.jpg 380-760 нм (т. наз. видимая часть спектра). Суммарное действие электромагн. излучений во всем указанном интервале вызывает ощущение белого цвета, отсутствие определенного интервала длин волн - окрашенного (см. Цветометрия). В табл. 1 приведены приблизит, границы интервалов длин волн монохро-матич. световых лучей (т. наз. спектральные цвета) и дополнит. цвета, к-рые возникают в зрительном аппарате, если из белого луча изымается (поглощается) к.-л. из спектральных цветов.

Табл. 1.- ПРИМЕРНЫЕ ГРАНИЦЫ ОСНОВНЫХ ЦВЕТОВ СПЕКТРА
l, нм
Спектральный цвет
Дополнительный цвет
400-435
Фиолетовый
Зел е новато-желтый
435-480
Синий
Желтый
480-490
Зеленовато-синий*
Оранжевый
490-500
Синевато-зеленый*
Красный
500-560
Зеленый
Пурпурный
560-580
Желтовато- зеленый
Фиолетовый
580-595
Желтый
Синий
595-605
Оранжевый
Зеленовато-синий*
605-730
Красный
Синевато-зеленый*
730-760
Пурпурный
Зеленый

*Голубой.

Белое тело практически полностью отражает лучи всей видимой части спектра, черное - полностью поглощает их, серое -поглощает все лучи приблизительно одинаково, но не полностью, цветное - избирательно поглощает нек-рые из них.
Энергия Е электромагн. излучения определяется ур-нием Планка:6013-25.jpg (h - постоянная Планка; с - скорость света;6013-26.jpg- длина волны) и составляет для видимой части спектра ~ 158-300 кДж/моль. Для того чтобы соед. было окрашенным, энергия возбуждения его молекулы6013-27.jpg(Е0 и E' - энергия молекулы соотв. в основном и возбужденном состояниях) должна лежать в этих пределах (при6013-28.jpg > 300 кДж/моль поглощение происходит в УФ, при6013-29.jpg < 158 кДж/моль - в ИК частях спектра). Указанным значениям энергии возбуждения отвечают переходы между разл. электронными уровнями энергии молекул (см. Молекулярные спектры).
Поглощение света в-вом характеризуется кривой поглощения, к-рая строится на основе измерения интенсивностей поглощения света определенных длин волн, рассчитанных по закону Бугера-Ламберта-Бера:6013-30.jpg где I0 и I -интенсивности светового луча соотв. до и после прохождения через р-р в-ва; С - молярная концентрация в-ва; L - толщина слоя р-ра;6013-31.jpg- молярный коэф. поглощения, или экстинкции, характерный для каждого в-ва. Если кривая поглощения построена в координатах6013-32.jpg то положение ее максимума на оси абсцисс6013-33.jpg характеризует спектральный цвет и является мерой энергии возбуждения, а положение максимума на оси ординат6013-34.jpg - интенсивность окраски и является мерой вероятности электронного перехода (рис. 1).

6013-35.jpg

Рис. 1. Спектральная кривая поглощения.

С уменьшением энергии возбуждения6013-36.jpg смещается в длинноволновую часть спектра, при этом окраска изменяется от желтой к оранжевой, красной и т. д.; такое изменение цвета наз. его углублением или батохромным сдвигом; увеличение энергии возбуждения, приводящее к смещению6013-37.jpg в коротковолновую область и изменению окраски в обратной последовательности, наз. повышением цвета или гипсохромным сдвигом.
Первостепенное значение в процессах поглощения света молекулами орг. соед. имеет разность энергий их граничных мол. орбиталей (ГМО) - высшей занятой и низшей свободной, т. к. переход электронов с одной орбитали на другую обычно обусловливает длинноволновую полосу поглощения, лежащую в видимой части спектра и определяющую цвет соед. Уровни ГМО зависят от характера электронов, входящих в состав молекулы.
Для Н2 и парафинов, содержащих только6013-38.jpgсвязи С — Н и С — С, энергия возбуждения для перехода6013-39.jpg составляет (кДж/моль): 1090 (Н2), 1000 (СН4), 890 (С2Н6), что соответствует поглощению в дальней УФ области (6013-40.jpg 110, 120 и 135 нм соотв.). Такие соед. бесцветны.
Для молекул углеводородов с изолир.6013-41.jpgсвязями появляется возможность6013-42.jpg -перехода; при этом энергия возбуждения снижается и составляет, напр., для этилена 739 кДж/моль, что соответствует поглощению в дальней УФ области (6013-43.jpg 162,5 нм). Такие соед. также бесцветны.
Иное явление наблюдается для углеводородов с сопряженными двойными связями, у к-рых6013-44.jpgэлектроны делокализованы. С увеличением углеводородной цепи уровни энергии ГМО сопряженных6013-45.jpgсвязей расщепляются и появляются новые уровни, переход между к-рыми требует меньших затрат энергии по сравнению с этиленом. Так, для бутадиена энергии6013-46.jpg-перехода 553 кДж/моль, что соответствует поглощению при6013-47.jpg 217 нм (т. е. в ближнем ультрафиолете). Одновременно значительно возрастает интенсивность полос поглощения. По мере удлинения сопряженной цепочки происходит дальнейшее сближение уровней ГМО, в результате чего имеет место систематич. смещение полосы поглощения в длинноволновую часть спектра и появление окраски.
Аналогичное действие оказывает увеличение замкнутой (ароматической) системы сопряженных6013-48.jpgсвязей, особенно если ее отдельные звенья расположены линейно, что обеспечивает возможность делокализации6013-49.jpgэлектронов (табл. 2).
Смещение полосы поглощения в длинноволновую часть спектра происходит также при наличии в сопряженной системе как электронодонорных, так и электроноакцепторных заместителей, к-рые усиливают делокализацию6013-50.jpgэлектронов в основном состоянии, что приводит к сближению их ГМО и углублению цвета (табл. 3).
Важным фактором влияния электронодонорных и электроноакцепторных заместителей на электронный спектр поглощения является снятие запретов по симметрии на вероятность электронных переходов. Напр., у бензола первые два длинноволновых электронных перехода запрещены по симметрии.

Табл. 2.- ЭНЕРГИИ ВОЗБУЖДЕНИЯ И ДЛИННОВОЛНОВЫЕ ПОЛОСЫ ПОГЛОЩЕНИЯ АЛИФАТИЧЕСКИХ И АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ
Соединение
6013-51.jpg

кДж/ моль

6013-52.jpg

нм

Цвет
Бутадиен СН2 = СНСН= СН2
553
217
Бесцв.
Гексатриен СН2 = СНСН= СНСН= СН2
481
260
То же
Октатетраен СН2 = СН(СН= СН)2СН= СН2
397
302
То же
Ликопин {(СН3)2С = СН(СН2)2С(СН3) = СН[СН = СНС(СН3) = СН]2СН = }2
237
506
Ярко-красный
Бензол6013-53.jpg
471
255
Бесцв.
Нафталин6013-54.jpg
383
275
То же
Антрацен6013-55.jpg
324
370
То же
Тетра-цен6013-56.jpg
261
460
Желтый
Пента-цен6013-57.jpg
207
580
Синий
Гекса-цен6013-58.jpg
173
693
Голубой
Перилен6013-59.jpg
278
432
Желтый
Терилен6013-60.jpg
232
518
Пурпурный
Коронен6013-61.jpg
292
411
Желтый

Табл. 3.- ДЛИННОВОЛНОВЫЕ ПОЛОСЫ ПОГЛОЩЕНИЯ РАЗЛИЧНЫХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
Соединение
6013-62.jpg нм
Бензол C6Н6
255
Нитрозобензол C6H5NO
280
Анилин С6Н52
282
Диметиланилин C6H5N(CCH3)2
297
4-Нитрозодиметнланилин (CH3)2NC6H4NO
420,5

Введение заместителей снимает запрет и увеличивает интенсивность поглощения света. Так, молярный коэф. поглощения6013-63.jpg фенола в ~ 7, анилина в 8, нитробензола в 45, 4-нитрофенола в 56,4-нитроанилина в 72 раза больше6013-64.jpgбензола (для длинноволновых максимумов).
Влияние заместителей м. б. усилено или ослаблено ионизацией. Так, в кислой среде усиливаются электроноакцепторные св-ва карбонильной группы в результате присоединения протона и появления эффективного положительного заряда
6013-65.jpg электронодонорные св-ва аминогруппы вследствие перехода азота в новое валентное состояние исчезают6013-66.jpg в щелочной среде усиливаются электронодонорные св-ва гидроксигруппы благодаря тому, что кислород приобретает эффективный отрицательный заряд6013-67.jpg Эти изменения отражаются на поглощении света соединениями (табл. 4).

Табл. 4.- ДЛИННОВОЛНОВЫЕ ПОЛОСЫ ПОГЛОЩЕНИЯ ИОНИЗИРОВАННЫХ МОЛЕКУЛ
Соединение
6013-68.jpg нм
Бензол С6Н6
255
Фенол С6Н5ОН
275
Фенолят-анион С6H5О-
289
Анилин C6H5NH2
282
Анилиний-катион C6H5NH+3
253
4-Нитрофенол О26H4ОН
315
4-Нитрофенолят-анион O2NC6H4O-
400

Усиление электронодонорных и электроноакцепторных св-в одновременно с углублением цвета увеличивает и интенсивность поглощения. Для 4-нитрофенолят-аниона6013-69.jpg в ~ 1,9 раза превосходит6013-70.jpg 4-нитрофенола. Напротив, утрата электронодонорных св-в аминогруппы в результате ионизации в кислой среде приводит к уменьшению интенсивности поглощения: если6013-71.jpg анилина в 8 раз больше, чем6013-72.jpg бензола, то анилиний-катион поглощает практически с той же интенсивностью, что и бензол.
Цветность орг. соед. связана с их принадлежностью к альтернантным или неальтернантным системам (см. Альтернантные углеводороды). Так, введение в молекулу альтернантного углеводорода электронодонорного заместителя (напр., в положение 1 или 2 нафталина) всегда вызывает батохромный сдвиг полосы поглощения, для неальтернантных углеводородов эта закономерность не соблюдается; напр., введение группы СН3 в молекулу азулена (6013-73.jpg580 нм) может привести к батохромному сдвигу (в положение 1 или 3 - до 608 нм, а в 5 или 7 - до 592 нм) либо к гипсохромному (в положение 2 - до 566 нм, 4 или 8 - до 568 нм, а в 6 - до 565 нм).
Имеет значение также принадлежность орг. соед. к четным или нечетным альтернантным системам. Четные альтернантные углеводороды в основном состоянии содержат четное число электронов, заполняющих попарно все связывающие6013-74.jpg и6013-75.jpgмолекулярные орбитали (МО), энергия к-рых меньше энергии орбиталей атомов, входящих в состав молекулы. Молекулы нечетных альтернантных углеводородов в электрически нейтральном состоянии (радикалы) содержат нечетное число электронов, заполняющих попарно все связывающие МО, и один неспаренный электрон, к-рый находится на т. наз. несвязывающей орбитали (НМО), последняя по своей природе является6013-76.jpgорбиталью. Если частица представляет собой мол. анион, на НМО находится электронная пара, если же частица представляет собой мол. катион, эта орбиталь остается вакантной. В приближении линейной комбинации атомных орбиталей (см. ЛКАО-приближение)коэф. при орбита-лях всех непомеченных атомов равны нулю, а для помеченных (метят только нечетные атомы) - имеют конечные значения, т. е. для электронов, находящихся на НМО, электронная плотность сосредоточена только на помеченных атомах, тогда как на низшей свободной МО (НСМО) она распределена равномерно по всем помеченным и непомеченным атомам.
Эти особенности НМО проявляются при введении в молекулы ароматич. соед. гетероатомов. Так, если к центральному атому С (непомеченному) молекулы синего гидрола Михлера (ф-ла I; R = H,6013-77.jpg 603,5 нм) присоединяется группа NH2, энергия НМО не изменяется, энергия же НСМО повышается, в результате увеличивается энергия возбуждения (6013-78.jpg рис. 2) и полоса поглощения смещается гипсохромно до6013-79.jpg 420 нм (I; R= NH2; желтый аурамин).

6013-80.jpg

Одновременно появляется новая n-орбиталь, на к-рой размещается неподеленная электронная пара атома группы NH2' ee энергия ниже энергии НМО вследствие большей электроотрицательности атома N по сравнению с атомом С и возникает6013-81.jpg переход, обусловливающий появление новой полосы поглощения с6013-82.jpg372 нм (УФ область). Возникает т. наз. разветвленная (или конкурирующая) сопряженная система (2 электронодонорных и 1 электроноакцепторный заместитель). Если же понизить электронодонорные св-ва группы NH2 ацетилированием, конкурентоспособность ее уменьшается, длинноволновая полоса поглощения снова смещается батохромно почти до уровня гидрола Михлера (до6013-83.jpg590 нм) и восстанавливается синий цвет.

6013-84.jpg

Рис. 2. Уровни энергии НМО и НСМО и электронные переходы в молекулах гид-рола Михлера (а) и аурамина (б).

В случае, если 2 ближайших друг к другу атома С в бензольных кольцах гидрола Михлера замкнуть через электроотрицат. атомы N или О, образуется соед. ф-лы II. При этом энергия НМО не изменяется, а энергия НСМО повышается, что приводит к смещению длинноволновой полосы поглощения до 550 нм в случае X = О (пурпурный пиронин) и до 488 нм в случае X = NH (акридиновый оранжевый).

6013-85.jpg

Большое влияние на поглощение света орг. соед. оказывают пространств. факторы, приводящие к искажениям формы молекул. При этом существенное значение имеет характер искажения. Если молекула перестает быть плоской, то происходит сдвиг6013-86.jpg в коротковолновую область, т. е. цвет повышается; если же происходит изменение валентных углов без существенного нарушения плоской формы молекулы, то имеет место углубление цвета. В первом случае причина повышения цвета связана с частичным или полным разобщением отдельных участков цепи сопряжения вследствие нарушения копланарности молекулы из-за поворота одних ее частей по отношению к другим вокруг простой связи. Напр., молекулы дигидрофенантрена (III;6013-87.jpg 267 нм) и перилена (IV;6013-88.jpg432 нм), имеющие плоскую форму, поглощают свет в более длинноволновой области, чем бифенил (V;6013-89.jpg 251,5 нм) и бинафтил (VI;6013-90.jpg 291 нм), у к-рых возможен поворот вокруг биарильной связи, нарушающий сопряжение6013-91.jpg -электронов двух ароматич. ядер.

6013-92.jpg

По той же причине из двух аналогичных азокрасителей производное бензидинсульфона (VII; синий) окрашено глубже, чем производное бензидина (VIII; коричнево-красный).

6013-93.jpg

В азокрасителе IX введение заместителей в орто-положение к диалкиламиногруппе нарушает сопряжение неподеленной пары азота с6013-94.jpg-системой, что приводит к повышению цвета. Напр., IX (R=H) поглощает при6013-95.jpg 475 нм; при R = СН3 или изо3Н76013-96.jpg 438 и 420 нм соотв.; одновременно уменьшается интенсивность поглощения в 1,5 и 1,7 раза.

6013-97.jpg

При искажении углов между направлениями связей атомов без значит. нарушения плоской структуры молекулы сопряжение6013-98.jpg-электронов существенно не нарушается, но возникающее напряжение сближает уровни энергии молекулы в основном и возбужденном состояниях, снижая тем самым энергию возбуждения. Так, введение в центральную метиновую группу монометинцианина (X; R = Н;6013-99.jpg 425 нм) метильной группы (X; R = CH3;6013-100.jpg 465 нм), создающей пространственные затруднения, вызывает углубление цвета при одновременном падении интенсивности поглощения почти вдвое.

6013-101.jpg

Большое влияние на цвет орг. соед. оказывает присутствие в его структуре металла. При образовании комплекса создаются новые возможности электронных переходов, обусловливающие появление новых полос поглощения в спектрах комплексов. Появление этих полос связано с переносом электрона с высшей занятой МО (ВЗМО) орг. молекулы (лиганда) на своб. атомную орбиталь металла, с переходом ^-электрона металла на НВМО лиганда (6013-102.jpg-переход), а также с возможностью6013-103.jpg перехода, к-рый возникает благодаря снятию вырождения с вакантных d-орбиталей металла под влиянием поля лиганда. Обычно6013-104.jpgпереходы существенно на цвет комплексов не влияют, т. к. их полосы большей частью находятся в ИК области спектра.
В химии красителей в качестве металлов-комплексообразователей наиб. часто используют Cr, Cu, Ni, Co, Fe, A1 в разл. степенях окисления, обычно 2 или 3. При образовании внутрикомплексных соед. атом металла входит в устойчивый 5- или 6-членный цикл; при этом он связывается с двумя разл. атомами, один из к-рых отдает ему неподеленную пару электронов (донорно-акцепторная, или координац., связь). Если эти электроны участвуют в системе сопряжения6013-105.jpgсвязей, ответственных за поглощение света, комплексообразование сопровождается углублением цвета, напр. цвет соед. XI изменяется от оранжевого до зеленого при образовании комплекса с Fe, до оливкового - с Сr, до красно-коричневого - с Со.

6013-106.jpg

В случае, если неподеленные пары электронов не входят в систему сопряженных двойных связей, ответственных за возникновение окраски, комплексообразование увеличивает устойчивость окрасок к разл. воздействиям (света, тепла и др.).
Электронной теории цветности предшествовали более ранние теории. Одной из первых была хромофорно-ауксохромная теория О. Витта (1876), согласно к-рой окрашенные соед. содержат ненасыщ. группы - хромофоры (напр., N=N, NO2, NO, CH = CH, C = O), ответственные за цвет орг. соед. (такие соед. наз. хромогенами), и электронодонорные группы - ауксохромы (напр., ОН, SH, NH2, NHR, NR2), повышающие интенсивность окраски. Несмотря на то, что теория Витта устарела, предложенная им терминология используется в совр. химии красителей.
Хиноидная теория цветности, созданная Г. Армстронгом и Р. Ниецким (1887), объясняла появление окраски перегруппировкой ароматич. (бензоидного) ядра в хиноидное.
Наиб. близка к совр. теории цветности теория Г. Льюиса (1916), по к-рой "цвет обусловлен селективным поглощением света валентными электронами, частоты к-рых синхронны с соответствующей частотой световых колебаний".

Лит.: Венкатараман К., Химия синтетических красителей, пер. с англ., т. 1, Л., 1956, т. 3, Л., 1974; Дьюар М., Догерти Р., Теория возмущений молекулярных орбиталей в органической химии, пер. с англ., М., 1977; Хедвиг П., Прикладная квантовая химия, пер. с англ., М., 1977; Барлтроп Дж., Коил Дж., Возбужденные состояния в органической химии, пер. с англ., М., 1978; Киприанов А. И., Цвет и строение цианиновых красителей, К., 1979; Степанов Б. И., Введение в химию и технологию органических красителей, 3 изд., М., 1984; Свердлова О. В., Электронныеспектры в органической химии, 2 изд., Л., 1985.

Б. И. Степанов.


^ЗГЛ: ЦВЕТНОСТЬ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ