-
()
-


@Mail.ru .
[ ]

^: *https://www.cambridge.org/core/journals/weed-technology/all-is sues (https://www.cambridge.org/core/journals/weed-technology/all-iss ues)
^: Kniss A.R.
^: Soybean Response to Dicamba: A Meta-Analysis [ , ( , , , . ). ]
^: Weed Technology, 2018; Vol.32,N 5. - P. 507-512
^: 2018
^: Bibliogr.:p.512
+

^: A meta-analysis of 11 previously published field studies was conducted with the objectives being to (1) estimate the no observable effects dose (NOED) for dicamba on susceptible soybean; (2) evaluate available evidence for hormesis, or increased soybean yield in response to low doses of dicamba; (3) estimate the dose of dicamba likely to cause measurable soybean yield loss under field conditions; and (4) quantify the relationship between visible injury symptoms and soybean yield loss. All studies that included visible injury data (N=7) reported injury symptoms at the lowest nonzero dicamba dose applied (as low as 0.03 g ae ha−1), and therefore a NOED could not be estimated from the existing peer-reviewed literature. Based on statistical tests for hormesis, there is insufficient evidence to support any claim of increased soybean yield at low dicamba doses. Future research should include a range of dicamba doses lower than 0.03 g ha−1 to estimate a NOED and determine whether a hormesis effect is possible at or below dicamba doses that cause visible injury symptoms. Soybean is more susceptible to dicamba when exposed at flowering (R1 to R2 stage) compared with vegetative stages (V1 to V7). A dicamba dose of 0.9 g ha−1 (95% CI=0.08 to 1.7) at the flowering stage was estimated to cause 5% soybean yield loss. When exposed at vegetative stages, dicamba doses that cause less than 30% visible injury symptoms (95% CI=23 to 49%) appear unlikely to cause greater than 5% soybean yield loss; however, if soybean is exposed at flowering, visible injury symptoms greater than 12% (95% CI=8 to 16%) are likely to be associated with at least 5% soybean yield loss. aref1

^TRN: 1907790
^:
^:
+



        

1998-2021 ©